associated with reductions in pulse pressures and rises in portal venous pressures. These changes appeared to exhibit rapid and complete tachyphylaxis. The lack of apparent changes in the morphology of the lead II ECG indicates that the effects of the agent did not produce arrhythmias or ectopic foci of excitation. A determination of whether minor local changes in excitation occurred secondary to such effects as regional changes in myocardial circulation cannot be inferred from these limited data.

Experiments with lower dosages or apparently ineffective 1.0-mg/kg iv and 50-mg/kg intragastric dosages indicated that the individual components of the retch response (increased frequency of respiration, gastric mucus secretion, antral contractions, and corporal-fundal atonia) were invariably present but of such small intensity that the composite response was decidedly less than that constituting frank retching.

A similar set of sequelae is also present in humans who report feelings of nausea but who do not visibly retch. It is impossible to make this judgment with dogs, particularly anesthetized dogs. But these observations furnish an adequate physiological basis to suspect that the gastric or intravenous administration of dosages that are insufficient to produce frank retching might be accompanied by sensations of nausea.

It is concluded that the high molecular weight, branched polyethyleneimine, whether administered to dogs by gastric intubation or intravenously, produces an emetic response similar to ipecac in that it can act reflexly or by direct stimulation of the chemoreceptor trigger zone.

REFERENCES

(1) A. Raina and J. Jänne, Med. Biol., 53, 121 (1975).

(2) S. Melamed, G. R. Carlson, J. N. Moss, E. J. Belair, and M. F. Tansy, J. Pharm. Sci., 66, 899 (1977).

(3) S. Lepkovsky, M. K. Dimick, F. Furuta, S. E. Feldman, and R. Park, J. Nutr., 105, 1491 (1975).

(4) M. F. Tansy, R. C. Mackowiak, and M. H. F. Friedman, Surg. Gynecol. Obstet., 127, 259 (1968).

(5) H. L. Borison and S. C. Wang, Pharmacol. Rev., 5, 193 (1953).

(6) J. Zabara, R. B. Chaffee, Jr., and M. F. Tansy, Space Life Sci., 3, 282 (1972).

(7) J. E. Weaver and J. F. Griffith, Toxicol. Appl. Pharmacol., 14, 214 (1969).

ACKNOWLEDGMENTS AND ADDRESSES

Received September 29, 1975, from the *Department of Physiology and Biophysics, Health Sciences Center, Temple University, Philadelphia, PA 19140, and the [‡]Research Laboratories, Rohm and Haas Co., Spring House, PA 19477.

Accepted for publication June 23, 1976.

The authors are indebted to Mr. Harold Perrong and Mr. Wendell Landin for technical assistance.

* To whom inquiries should be directed.

New Compounds: Potential Antituberculous Agents I: Alkylaryl 4-Arylformamidinothiosemicarbazones

P. K. SRIVASTAVA × and J. S. UPADHYAYA

Abstract D A series of alkylaryl 4-arylformamidinothiosemicarbazones was synthesized for evaluation as antituberculous agents. The synthesis was effected by the condensation of different arylcyanamides with various thiosemicarbazones. The required intermediates also are described.

Keyphrases 🗆 Thiosemicarbazones, various—synthesized for evaluation as antituberculous agents
Antituberculous agents, potential-various thiosemicarbazones synthesized

Interest in the synthesis and biological evaluation of thiosemicarbazone derivatives was renewed by the fact that tibione (p-acetylaminobenzaldehyde thiosemicarbazone) (1-3) possesses antituberculous activity. Many reports (4-13) discussed the change of activity due to variations in the structure of the parent compound.

DISCUSSION

The present report deals with the synthesis of acetophenone 4-arylformamidinothiosemicarbazones (Va-Vm, Table I) and 1-acetonaphthone 4-arylformamidinothiosemicarbazones (VIa-VIm, Table II) by the condensation of corresponding arylcyanamide hydrochlorides (I, Scheme I) with the appropriate thiosemicarbazones (II or III, Scheme II). Although the monosulfides (IV) could not be isolated, this intermediate stage was confirmed previously in analogous reactions (14-17).

$$\begin{array}{ccc} R_1 NHCN \cdot HCl \longrightarrow R_1 NHC = NH & \text{or} & R_1 NHC = NHCl^- \\ & & & | \\ & & Cl \\ & & I \\ & & Scheme I \end{array}$$

Precursors (I) were obtained by the desulfurization of related thioureas by lead hydroxide and conversion to related hydrochlorides (18). The synthesized thiosemicarbazones (Tables I and II) are white crystalline compounds soluble in polar solvents. Since these compounds could not be crystallized without decomposition, purification was achieved by repeated washings with several solvents. It was hoped that these potential antituberculous agents would have low toxicity to normal cells and have a good chemotherapeutic index¹.

EXPERIMENTAL²

Phenylcyanamide (18)—A mixture of phenylthiourea (15.2 g, 0.1 mole) dissolved in sodium hydroxide (3 g in 200 ml of water) and freshly prepared lead hydroxide (24.12 g, 0.1 mole) was heated on a water bath for 4 hr. It then was cooled and filtered, and the filtrate was acidified with acetic acid. The fluffy precipitate of phenylcyanamide was dissolved in ether and dried by adding anhydrous sodium sulfate. The hydrochloride of phenylcyanamide was prepared by passing dry hydrogen chloride gas through the ethereal solution.

By adopting a similar procedure, the following cyanamides were prepared: 2-methylphenyl, 3-methylphenyl, 4-methylphenyl, 2-methoxyphenyl, 4-methoxyphenyl, 4-ethoxyphenyl, 2-chlorophenyl, 3-chlorophenyl, 4-chlorophenyl, 4-bromophenyl, 2,5-dimethylphenyl, and 1naphthyl.

Acetophenone Thiosemicarbazone (II) (12, 13)---Acetophenone (12.0 g, 0.1 mole) was dissolved in ethanol (50%, 100 ml) and acetic acid (2.0 ml), and thiosemicarbazide (9.10 g, 0.1 mole) was added. The solution was warmed with occasional swirling until the thiosemicarbazide dissolved, and then the solution was refluxed for 1 hr. After cooling, crys-

¹ These compounds have been submitted for testing, and the results will be re-

² Melting points were determined with a Kofler hot-stage apparatus and are uncorrected.

CH ₃		
). 	NNHCNHCNH	R ₁ · HCl

s

C₆H₅

∦ NH

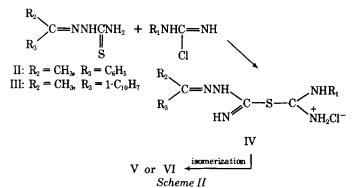

Compound	R,	Yield, %	Melting Point	Molecular Formula	Analysis, %	
					Calc.	Found
Va	C ₆ H ₅	75	208–209°	C ₁₆ H ₁₈ ClN ₅ S	C 55.25 H 5.18 N 20.14	55.08 5.06 20.06 9.15
Vb	$2-CH_{3}C_{6}H_{4}$	78	210-212°	$C_{17}H_{20}ClN_5S$	H 5.18 N 20.14 S 9.20 C 56.43 H 5.53 N 19.36	$56.38 \\ 5.51 \\ 19.27$
Vc	$3-CH_{3}C_{6}H_{4}$	65	157–158°	C ₁₇ H ₂₀ ClN ₅ S	N 19.36 S 8.85 C 56.43 H 5.53 N 19.36 S 8.85 C 56.43 H 5.53 N 19.36 S 8.85 C 56.43 H 5.53 N 19.36 S 8.85 C 54.04 H 5.29 N 18.54	$8.81 \\ 56.37 \\ 5.48 \\ 10.27$
Vd	4-CH ₃ C ₆ H ₄	70	207–208°	$C_{17}H_{20}ClN_5S$	S 8.85 C 56.43 H 5.53 N 19.36	$\begin{array}{c} 19.27\\ 8.78\\ 56.40\\ 5.50\\ 19.24\\ 8.77\\ 53.88\\ 5.18\\ 18.46\\ 8.49\end{array}$
Ve	2-CH ₃ OC ₆ H ₄	68	200–201°	C ₁₇ H ₂₀ ClN ₅ OS	S 8.85 C 54.04 H 5.29 N 18.54	8.77 53.88 5.18 18.46
Vf	4-CH ₃ OC ₆ H ₄	60	160–162°	C ₁ ,H ₂₀ ClN ₅ OS	S 8.47 C 54.04 H 5.29 N 18 54	8.42 53.96 5.24 18.47
Vg	$4-C_2H_5OC_6H_4$	72	187–188°	C ₁₈ H ₂₂ ClN ₅ OS		8.39 55.10 5 54
Vh	2-ClC ₆ H ₄	70	145–146°	$C_{16}H_{17}Cl_2N_5S$	S 8.17 C 50.26 H 4.45 N 18 22	17.81 8.11 50.18 4.40 18.28
Vi	3-ClC ₆ H ₄	66	132–133°	$C_{16}H_{17}Cl_2N_sS$	C 50.26	18.20 8.33 50.20 4.42 18.25
Vj	4-ClC ₆ H ₄	74	$151 - 152^{\circ}$	$C_{16}H_{17}Cl_2N_5S$		$ \begin{array}{r} 18.25 \\ 8.31 \\ 50.22 \\ 4.39 \\ 18.27 \\ \end{array} $
Vk	4-BrC ₆ H ₄	65	171–172°	C ₁₆ H ₁₇ BrClN ₅ S	S 8.37 C 45.01 H 3.98 N 16 41	$\begin{array}{r} 8.32 \\ 8.32 \\ 44.78 \\ 3.86 \\ 16.34 \end{array}$
VI	2,5-(CH ₃) ₂ C ₆ H ₃	68	209-210°	C ₁₈ H ₂₂ ClN ₅ S	H 3.98 N 16.41 S 7.50 C 57.52 H 5.85 N 18 64	7.46 57.47 5.78 18.60
Vm	$1 - C_{10}H_7$	72	$203-204^{\circ}$	$\mathbf{C_{20}H_{20}ClN_{5}S}$	N 18.64 S 8.52 C 60.37 H 5.03 N 17.61 S 8.08	8.49 60.22 4.98 17.29 8.01

Table I—Physical Constants of Acetophenone 4-Arylformamidinothiosemicarbazone Hydrochlorides

talline II was collected and recrystallized from 50% ethanol as white needles, 18.9 g (90%), mp 116–117° [lit. (19) mp 118–119°].

1-Acetonaphthone thiosemicarbazone (III) was prepared similarly. Acetophenone 4-Phenylformamidinothiosemicarbazone Hy-

drochloride (Va)—Compound II (3.0 g, 0.015 mole) was dissolved in

acetone (20.0 ml), and the solution was cooled in a freezing mixture. To this cooled solution, phenylcyanamide hydrochloride (2.4 g, 0.015 mole) dissolved in acetone (10.0 ml) was gradually added with constant shaking. After this solution was in the freezing mixture for 1 hr, crystalline pure Va was separated, filtered, and washed with acetone and petroleum ether to remove any unreacted material, 4.15 g (18%), mp 208–209°.

Anal.—Calc. for $C_{16}H_{18}CIN_5S$: C, 55.25; H, 5.18; N, 20.14; S, 9.20. Found: C, 55.08; H, 5.06; N, 20.06; S, 9.15.

Compounds Vb-Vm (Table I) were prepared by condensing II with the appropriate I.

With a similar procedure, VIa-VIm (Table II) were obtained.

These thiosemicarbazone hydrochlorides were characterized by elemental analyses and the presence of characteristic bands at 1520 (N=C=S), 1625 (C=N), and 3400 (NH) cm⁻¹ and a substituted benzene ring (760 cm⁻¹) in their IR spectra.

REFERENCES

(1) G. Domagk, R. Behnisch, F. Mietzsch, and H. Schmidt, Naturwissenschaften, 33, 315 (1946).

(2) R. Behnisch, F. Mietzsch, and H. Schmidt, Angew. Chem., 60, 113 (1948).

Hydrochlorides						S NH
	R ₁	Yield, %	Melting Point	Molecular Formula	Analysis, %	
Compound					Calc.	Found
VIa	C ₆ H ₅	67	197–198°	C ₂₀ H ₂₀ ClN ₅ S	C 60.37 H 5.03 N 17.61	60.22 4.98 17.29
VIb	$2-CH_{3}C_{6}H_{4}$	65	200–201°	C21H22ClN5S	S 8.05 C 61.23 H 5.34 N 17.01	8.00 61.12 5.28 16.92
VIc	3-CH ₃ C ₆ H ₄	60	148–149°	C21H22ClN5S	S 7.77 C 61.23 H 5.34 N 17.01	$7.68 \\ 61.14 \\ 5.30 \\ 16.96$
VId	4-CH ₃ C ₆ H ₄	75	208–210°	$C_{21}H_{22}ClN_sS$	S 7.77 C 61.23 H 5.34 N 17.01	7.70 61.19 5.27 16.99
VIe	2-CH ₃ OC ₆ H ₄	65	195–196°	C ₂₁ H ₂₂ ClN ₅ OS	S 7.77 C 58.94 H 5.14 N 16.37	7.66 58.82 5.08 16.22
VIf	4-CH ₃ OC ₆ H ₄	70	203–204°	C21H22CIN5OS	S 7.48 C 58.94 H 5.14 N 16.37 S 7.48	7.4258.845.1216.247.40
VIg	$4-C_2H_5OC_6H_4$	60	155–156°	$C_{22}H_{24}ClN_5OS$	S 7.48 C 59.79 H 5.43 N 15.85 S 7.24	59.68 5.39 15.78
VIh	2-ClC ₆ H ₄	72	, 146−147°	$C_{20}H_{19}Cl_2N_5S$	C 55.55 H 4.39 N 16.20	$7.16 \\ 55.48 \\ 4.28 \\ 16.12 \\ 7.00 \\ 16.12 \\ 16.12 \\ 16.12 \\ 16.12 \\ 10.12 \\$
VIi	∕3-ClC ₆ H₄	64	141–142°	C20H19Cl2N5S	S 7.40 C 55.55 H 4.39 N 16.20 S 7.40	7.2255.474.3216.147.32
VIj	4-ClC ₆ H ₄	72	152–153°	$C_{20}H_{19}Cl_2N_5S$	C 55.55 H 4.39 N 16.20	7.32 55.50 4.27 16.18 7.34
VIk	4-BrC ₆ H ₄	62	167–168°	C ₂₀ H ₁₉ BrClN ₅ S	S 7.40 C 50.36 H 3.98 N 14.69	$50.24 \\ 3.82 \\ 14.62$
VII	2,5-(CH ₃) ₂ C ₆ H ₃	64	2 06–207°	C22H24CIN5S	$\begin{array}{ccc} S & 6.71 \\ C & 62.04 \\ H & 5.64 \\ N & 16.45 \\ \end{array}$	$6.65 \\ 61.98 \\ 5.59 \\ 16.40 \\ 16.40 \\ 16.40 \\ 16.40 \\ 16.40 \\ 16.40 \\ 16.40 \\ 16.40 \\ 10$
VIm	1-C ₁₀ H ₇	69	202–204°	$C_{24}H_{22}ClN_5S$	$\begin{array}{ccc} S & 7.52 \\ C & 64.35 \\ H & 4.91 \\ N & 15.64 \\ S & 7.15 \end{array}$	7.48 64.22 4.80 15.49 7.02

Table II—Physical Constants of 1-Acetonaphthone 4-Arylformamidinothiosemicarbazone

Hydrochlorides

(3) R. Behnisch, F. Mietzsch, and H. Schmidt, Am. Rev. Tuberc., 61, 1 (1950).

(4) E. Hoggarth, A. R. Martin, N. E. Storey, and F. H. P. Young, Br. J. Pharmacol., 4, 248 (1949).

(5) W. B. Stillmann and A. B. Scott, U.S. pat. 2,416,239 (Feb. 18, 1947).

(6) J. Bernstein, H. L. Yale, K. Losee, M. Holsing, J. Martius, and W. A. Lott, J. Am. Chem. Soc., 73, 906 (1951).

(7) C. J. Duca, M. V. Rothlauf, and J. V. Scudi, Antibiot. Chemother., 2, 16 (1952).

(8) R. Donovick, F. Pansy, G. Stryker, and J. Bernstein, J. Bacteriol., 59, 667 (1950).

(9) D. Hamre, J. Bernstein, and R. Donovick, Proc. Soc. Exp. Biol. Med., 73, 275 (1950).

(10) K. A. Brownlee and D. Hamre, J. Bacteriol., 61, 127 (1951).

(11) R. L. Thompson, M. L. Price, and S. A. Minton, Jr., Proc. Soc. Exp. Biol. Med., 78, 11 (1951).

(12) E. Campaigne, P. A. Monroe, B. Arnwine, and W. L. Archer, J. Am. Chem. Soc., 75, 988 (1953).

(13) F. E. Anderson, C. J. Duca, and J. V. Scudi, *ibid.*, 73, 4967 (1951).

(14) P. K. Srivastava and M. Saleem, *Tetrahedron Lett.*, 23, 2725 (1968).

CH.

 $1 - C_{10}H_{2}$

=NNHCNHCNHR, · HCl

(15) S. N. Pandeya, Indian. J. Chem., 1, 525 (1963).

(16) P. K. Srivastava, J. Indian Chem. Soc., 2, 154 (1963).

(17) P. K. Srivastava and Y. R. Rao, *ibid.*, 40, 803 (1963).

(18) R. M. Sahasrabudhey and H. Krall, ibid., 19, 345 (1942).

(19) "Dictionary of Organic Compounds," vol. I, Eyre and Spottiswood, London, England, 1965, p. 13.

ACKNOWLEDGMENTS AND ADDRESSES

Received June 8, 1975, from the Surgical Research Laboratory, Institute of Medical Sciences, Banaras Hindu University, Varanasi-221005, India.

Accepted for publication June 30, 1976.

The authors are grateful to Prof. K. N. Udupa, Institute of Medical Sciences, Banaras Hindu University, and Prof. W. U. Malik, Department of Chemistry, Roorkee University, Roorkee, India, for providing necessary facilities and to C.S.I.R., New Delhi (India), for a Junior Research Fellowship (held by J. S. Upadhyaya).

* To whom inquiries should be directed.